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the observed shift for Cr3+ (-2.8X10-1 0) gives dB/dp 
= —0.09 cm_1/kbar (for hydrostatic pressure), i.e., 
l/B dB/dl= +0.75 (/ is a unit cell dimension). The 
figure for V2+ is presumably about the same. 

CONCLUSIONS 

The experimental splittings agree so well with theory 
that one is tempted to conclude that the point charge 
model is valid for V2+ and Cr3+ ions in MgO, and that 
the Hartree-Fock wave function of the free ion is a good 
approximation to the wave function in the crystal. 
However, as pointed out in I, the model (using this wave 
function) gives quite the wrong value for the cubic field 
parameter Dq. Presumably this discrepancy is due to 
covalency effects,2 which for some reason are not im­
portant, or cancel out, in the noncubic crystal field 
induced by strain. Furthermore, in the closely related 
case of (3d)3 ions in A1203, the model gives the wrong 
sign for the trigonal field parameter.34 This has been 

1. INTRODUCTION 

TH E temperature dependence of a thermodynamic 
function of an insulator at constant pressure is 

commonly described by an appropriate Debye temper­
ature, which is, in general, temperature-dependent. 
A preliminary report of this work has been given in 
Ref. 1. For a cubic insulator the observed temperature 

* Based on work performed under the auspices of the U. S, 
Atomic Energy Commission. 

f Part time address: Department of Physics, Northwestern 
University, Evanston, Illinois. 

explained by McClure3 as being due to a shift of the ion 
along the C3 axis, but even so he has to assume a wave 
function substantially more extended than that of the 
free ion.10 Either AI2O3 is so much more covalent than 
MgO that the wave functions of a (3d)z ion are quite 
different in the two lattices, or the geometrical arrange­
ment of ions in AI2O3 is substantially modified by the 
presence of the impurity. The similarity of the spectra 
in the two lattices inclines one to believe the latter 
alternative. 
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10 However large a shift along the C3 axis one permits, it appears 
to be impossible to obtain a trigonal field parameter of the correct 
sign using free ion wave functions (at any rate from the nearest 
neighbor potential). 

dependence of a Debye temperature at constant pressure 
can be easily converted into the dependence at constant 
volume by correcting for the effect of thermal expansion. 
The temperature dependence of a Debye temperature 
at constant volume is in turn a quantity on which one 
can make some general theoretical predictions.2 The 
expansion of the quasiharmonic expression for a 
thermodynamic function in inverse powers of the 

1 M. P. Tosi and F. G. Fumi, Bull. Am. Phys. Soc. 6, 293 (1961). 
2 F. G. Fumi and M. P. Tosi, J. Phys. Chem. Solids 23, 395 

(1962). 
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The temperature dependence at constant volume of the experimental Debye temperatures for the entropy, 
the thermal energy, and the heat capacity at constant volume of potassium chloride, bromide and iodide, 
and of sodium iodide is analyzed over a wide range of temperature (30°K< r<270°K) taking into account 
anharmonic effects. The inclusion of the leading anharmonic contribution into the quasiharmonic expan­
sions of the Debye temperatures for the three thermodynamic functions allows one to reproduce over the 
entire temperature range the curves for the entropy, which are the most accurate, and also those for the 
thermal energy. The curves for the heat capacity are reproduced at the lower temperatures, and their 
proper course is indicated at the higher temperatures, where they are affected by sizeable uncertainties. 
The different form of the temperature dependence of the Debye temperatures for the three functions in 
the quasiharmonic temperature range, and the different magnitude of the effect of the anharmonic contri­
butions on the Debye temperatures for the three functions at high temperature, are clearly illustrated. 
Refined values are obtained in each salt for the geometric mean of the vibrational frequencies and for the 
first few moments of the vibrational spectrum. The good agreement between the values of the moments derived 
from the three functions confirms the good validity of the quasiharmonic description of the thermal free 
energy at the lower temperatures. Values are obtained for the anharmonic contributions to the thermo­
dynamic functions at high temperature. 
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absolute temperature (Thirring-Stern expansions) leads 
one to anticipate that the temperature dependence of 
the Debye temperatures for different functions should 
be different in the range of moderate temperature. The 
Debye temperatures for the different functions should 
also approach different values in the limit of high 
temperature. In this limit, however, anharmonic contri­
butions to the thermodynamic functions are expected 
to become relevant and one can anticipate that they 
will affect differently the temperature dependence of 
the different Debye temperatures. 

We propose to discuss these expectations in detail 
and to show that they are borne out by experiment. To 
this end, we will give the quasiharmonic expansions for 
the Debye temperatures for the entropy, the thermal 
internal energy and the heat capacity at constant 
volume in inverse powers of the absolute temperature, 
and we will derive the leading anharmonic correction 
to these expansions. We will then use these formulas 
to analyze the observed temperature dependence at 
constant volume of the Debye temperatures for these 
thermodynamic functions in some potassium and 
sodium halides. The experimental Debye temperature 
for the entropy is most accurately known, and most 
easily obtained, at all temperatures, since the entropy 
is derived directly from the measured values of the 
heat capacity at constant pressure, without using 
thermodynamic corrections. We will see that the 
quasiharmonic analysis of the different thermodynamic 
functions at moderate temperature leads in each salt 
to the same values for the moments of the vibrational 
frequency spectrum, thus confirming the good validity 
of the quasiharmonic expression for the thermal free 
energy at these temperatures. We will see also that the 
analysis of the entropy at higher temperatures, includ­
ing the leading anharmonic correction, permits one to 
obtain fairly accurate values for the anharmonic con­
tribution. These are consistent with the data on the 
thermal energy and on the heat capacity at constant 
volume. A quasiharmonic analysis of the heat capacity 
at constant volume of the same salts at moderate tem­
perature, based on the quasiharmonic expansion of the 
pertinent Debye temperature, had already been carried 
out by Barron, Berg, and Morrison.3 The value of such 
an expansion had been suggested earlier by Domb and 
Salter.4 

2. THEORETICAL DISCUSSION 

The quasiharmonic expressions of the thermodynamic 
functions of a cubic insulator reduce at moderate and 
high temperatures to the so-called Thirring-Stern 
expansions. For the entropy, the thermal energy and 
the heat capacity at constant volume these expansions 

3 T. H. K. Barron, W. T. Berg, and J. A. Morrison, Proc. Roy. 
Soc. A242, 478 (1957). 

4 C. Domb and L. Salter, Phil. Mag. 43, 1083 (1952). 

can be written as follows [Ref. 2, Eqs. (A2) to (A6)]: 
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where the i?'s are the Bernoulli numbers. The character­
istic temperatures ©n are related to the geometric 
mean of the vibrational frequencies and to the moments 
of the vibrational spectrum of the solid, and are purely 
volume-dependent functions. This particular version 
of the Thirring-Stern expansions has the feature that 
each expansion takes the form of the corresponding 
Debye expansion when the various characteristic 
temperatures ©n are replaced by an appropriate Debye 
temperature. This depends on temperature and volume. 
This correspondence suggests at once the possibility of 
obtaining expansions of the quasiharmonic Debye 
temperatures for the entropy, the thermal energy and 
the heat capacity in inverse powers of the absolute 
temperature. 

The starting point of the derivation is the identifi­
cation of the Debye expansion of a given thermody­
namic function, containing a temperature-dependent 
Debye temperature, with the corresponding Thirring-
Stern expansion. I t is then immediately apparent that 
the expansions of the quasiharmonic Debye tempera­
tures for the entropy and for the heat capacity contain 
only even powers of T - 1 , and that the high-temperature 
limits of the quasiharmonic Debye temperatures for the 
entropy, the thermal energy and the heat capacity are 
©o, ©i, and ©2, respectively. The detailed derivation 
involves the introduction of the inverse-temperature 
expansion of the Debye temperature into the Debye 
expansion, the ordering of the terms in increasing 
powers of T~l and the identification of the resulting 
coefficients with the corresponding coefficients of the 
Thirring-Stern expansion. The leading terms of the 
resulting expansions of the quasiharmonic Debye 
temperature for the entropy (®sh), for the thermal 
energy (®wh) and for the heat capacity (®cA) are as 
follows : 

efl*=e0(i+f;a„r-*»); 

1 
0 i = - ( @ o 2 - © 2 2 ) ; 

40 
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These expansions can be expected to converge rapidly 
over the temperature range of convergence of the 
Thirring-Stern expansions. A noteworthy feature of the 
expansion of ®wh is that the coefficients of the even 
powers of T~x are completely determined by the 
coefficients of the previous terms of the expansion. The 
first three terms of the expansion of (®ch)2 had already 
been given by Barron et al.3 

At temperatures where the anharmonic contributions 
to a thermodynamic function are not negligible, but 
still such that the function does not exceed the range 
of values of the corresponding Debye function, the 
appropriate Debye temperature will differ from the 
quasiharmonic Debye temperature by a correction 
factor. We determine this factor in the limit of moder­
ately high temperatures where the vibrational free 
energy, inclusive of the anharmonic contributions 
deriving from cubic and quartic terms in the potential 
energy, has the form5 

3Nk 3Nk 
•iAT2+B+0(T-2), (7) 

Here A and B are purely volume-dependent functions. 

5 See, for example, A. A. Maradudin, P. A. Flinn, and R. A, 
Coldwell-Horsfall, Ann. Phys. (N. Y.) 15, 337 (1961) [Eqs. (3.13) 
and (3.15)]. 

The quantity 

S-Sh Wth-Wa.h 

IT— — 
3Nk §NkT 

Cr-Crh 

3Nk 
(8) 

gives, thus, the leading anharmonic contribution to the 
thermodynamic functions of interest6 and is, of course, 
subject to the restriction \AT\ < 1 . 

The starting point of the derivation is again the 
identification of the Debye expansion of a given 
thermodynamic function with the corresponding Thir­
ring-Stern expansion, corrected, however, by the leading 
anharmonic term. The cancellation of the quasihar­
monic contribution from the two sides of the equation 
yields directly the following equations for the Debye 
temperature for the entropy (®s), for the thermal 
energy (&w) and for the heat capacity (®c): 
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We write the ratio between each Debye temperature 
and the corresponding quasiharmonic Debye tempera­
ture as a power series in A T and determine the coeffi­
cients of the expansion by the type of procedure 
outlined above for the quasiharmonic expansions. The 
coefficients are found to decrease in magnitude as their 
order increases. The leading terms of the resulting 
expressions for the various Debye temperatures are 
as follows: 

0fl=©5* 

©p 

1+AT 

UT* 

Y®A d ( 
\ T Jd(®sh/T)\ 

sh v 
d(@sh/T)\3Nk). 

I d /Wth
h^ 
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(12) 

(13) 

6 The thermal energy contains, in fact, also a purely volume-
dependent anharmonic term. However, this does not need to be 
considered in the subsequent analysis since an analogous term 
is present also in the quasiharmonic thermal energy. 
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©c2= (®ch¥+\AT* / (—\\ 
L / d(®ch/TY\3Nk/J 

(14) 

A rough estimate of the deviations from unity of the 
ratios between each Debye temperature and the 
corresponding quasiharmonic Debye temperature indi­
cates that the anharmonic contributions affect the 
Debye temperature for the entropy by a percentage 
comparable to their fractional weight in the heat 
capacity, and that the deviations for the three functions 
are approximately in the ratio l:f (r/@i):10(r/®2)2 

when \AT\«L 

3. EXPERIMENTAL DATA 

We consider four salts, namely, potassium chloride, 
bromide, and iodide and sodium iodide. The primary 
data for the construction of the curves for the tempera­
ture dependence at atmospheric pressure of the experi­
mental Debye temperatures for the entropy, the 
thermal energy and the heat capacity at constant 
volume in these salts are the experimental values of the 
heat capacity at constant pressure. We have adopted 
the values measured by Berg and Morrison,7 which 
have an estimated accuracy of 0.2% at T>20°K. 
Appropriate numerical integrations of these data yield 
directly the entropy S and the thermal enthalpy H as 
functions of temperature at atmospheric pressure. The 
thermal energy Wth is derived from the enthalpy by 
means of the following relationships: 

H(V,T) = Wth(V,T)+Wc(V) 
-Wc(Vo)+P(V-Vo) (15) 

and [Ref. 2, Eqs. (2) and (14)] 

Wc(V)-Wc(Vo)^-P(V-Vo) 
+ (V~Vo)2/2VoK0. (16) 

Here Wc(V) is the cohesive energy of the solid of 
volume V at the absolute zero, and Vo and K0 are the 
volume and the isothermal compressibility of the solid 
at the absolute zero. Thus, 

Wth(V,T)^H(V,T)~ (V- Vo)2/2VoK0. (17) 

The heat capacity at constant volume is derived also 
from the heat capacity at constant pressure by means 
of the standard thermodynamic formula 

Cv=CP-(TpV/K), (18) 

where /3 is the coefficient of volume thermal expansion. 
The data necessary for these conversions are the 

density, the coefficient of volume thermal expansion 
and the isothermal compressibility as functions of 
temperature at atmospheric pressure. We have fitted 
the experimental values for the density at atmospheric 

7 W. T. Berg and J. A. Morrison, Proc. Roy. Soc. (London) A242, 
467 (1957). We are indebted to the Royal Society of London for 
sending us a copy of the complete tables of the primary results, 

pressure reported by Henglein8 at three temperatures 
with the three-parameter formula9 

P=poZl-aTDw(®/T)l, (19) 

where Dw(@/T) is the Debye function for the ratio 
between the thermal energy and 3NkT. Equation (19) 
yields then the following expressions for @ and K: 

(3=(po/p)aDc(®/T) 

Po r /da OL2VQ 
K=K0 21 

(20) 

\dP 3Nk Hi) 
Dc(-) , (21) 

3Nk VZVJ 

where Dc{®/T) is the Debye function for the heat 
capacity at constant volume divided by 3Nk. In the 
equation for K the quantity (l/&)d&/dP has been 
eliminated by identifying the isothermal pressure 
derivative of the Debye function for the entropy with 
the corresponding derivative of the entropy of the 
solid. While the equation for 0 involves only the 
parameters entering p, the equation for K involves two 
additional parameters. The values adopted for the 
various parameters are reported in Table I. The 

TABLE I. Empirical parameters for the density, the isothermal 
compressibility, and the thermal expansion. 

KCl 
KBr 
KI 
Nal 

po (g/cm3) 

2.0336 
2.8204 
3.2128 
3.7640 

OL (10-4 

deg-i) 

1.06 
1.13 
1.27 
1.38 

© (°K) 

252.0 
208.3 
177.5 
210.5 

da/dP 
K0 (10~15 

(10~12
 c m 2 / 

cm2/dyn) dyn deg) 

4.88 -3.82 
5.70 -4 .52 
7.08 -5 .57 
6.19 -1 .49 

7 

1.5 
1.6 
1.7 
1.7 

expression for 0 reproduces well the experimental 
values in potassium chloride10,11 in the temperature 
range from 50 to 200°K. At temperatures below 50°K 
the computed value becomes significantly larger than 
the measured value but in this range the correction 
Cp—Cv is quite unimportant. At temperatures 2 ^ 0 2 
the measured value exceeds the computed value by 
about 3% and the discrepancy increases rapidly with 
increasing temperature.12 This effect is apparent also 

8 F. A. Henglein, Z. Phys. Chem. 115, 91 (1925). 
9 See, for example, G. Leibfried and O. Hahn, Z. Physik 150, 

497 (1958). 
10 T. Rubin, H. L. Johnston, and H. W. Altman, J. Phys. 

Chem. 66, 948 (1962). 
11 G. K. White, Phil. Mag. 6, 1425 (1961); D. E. Schuele, 

AEC Tech. Rept. No. 23 Contract AT(l l- l )-623, 1962. 
12 A fit of Henglein's values for the density of sodium chloride 

by Eq. (19) leads to analogous discrepancies from the values of 
(3 measured by Rubin et at. [T. Rubin, H. L. Johnston, and 
H, W, Altman, J. Phys. Chem, 65, 65 (1961)]. 
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discrepancy of a few percent. In potassium and sodium 
iodide the expression fits the data of Spangenberg17 

and of Bridgman,18 and its deviation from the data of 
Norwood and Briscoe16 and of Claytor and Marshall19 

reaches 10% only at low temperature. Data pertaining 

100 
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FIG. 1. Temperature dependence of the experimental Debye 
temperatures (referred to the volume at 0°K) for the entropy, 
the thermal energy, and the heat capacity at constant volume in 
KBr. The horizontal lines denote the quasiharmonic limits of the 
Debye temperatures for the different functions at high tempera­
ture. 

in potassium bromide13 possibly with a larger magni­
tude. The expression for K fits closely the data of Gait14 

for potassium bromide over the whole temperature 
range. It fits also the data of Durand15 and of Norwood 
and Briscoe16 for potassium chloride within their 
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13 D. Bijl, Conference de physique des basses temperatures, Suppl. 
Bull. Inst. Int. Froid (Paris), 445 (1955). 

14 J. K. Gait, Phys. Rev. 73, 1460 (1948). 
16 M. A. Durand, Phys. Rev. 50, 449 (1936). 
16 M. H. Norwood and C. V. Briscoe, Phys. Rev. 112, 45 (1958). 

FIG. 2. Temperature dependence of the experimental Debye 
temperatures (referred to the volume at 0°K) for the entropy 
(solid curves), the thermal energy (dashed curves), and the heat 
capacity at constant volume (dot-dash curves) in KCI, KI, and 
Nal. The horizontal lines denote the quasiharmonic limits of the 
Debye temperatures for the different functions at high tempera­
ture. 

17 K. Spangenberg, Naturwiss. 43, 394 (1956). 
18 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 74, 21 (1940). 
« R, N. Claytor and B. J. Marshall, Phys. Rev. 120, 332 (1960), 
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FIG. 3. Quasiharmonic 
fit of the experimental 
Debye temperatures (re­
ferred to the volume at 
0°K) for the entropy, 
the thermal energy, and 
the heat capacity at 
constant volume in KBr 
in the temperature range 

l®2<r<80°K. 
The leading term of the 
inverse-temperature ex­
pansion of each Debye 
temperature is given by 
the intercept on the 
ordinate axis. 

©S(°K) 

0 4 8 12 
T-2 ( | 0-4oK-2, 

to the adiabatic compressibility were, of course, con­
verted into the isothermal compressibility by the 
standard thermodynamic formula. 

Figures 1 and 2 give the plots of the experimental 
Debye temperatures for the entropy, the thermal energy, 
and the heat capacity as functions of temperature at 
constant volume for the four salts in question. The 
constant volume was taken equal to the volume at 0°K. 
The experimental Debye temperatures at atmospheric 
pressure were corrected for thermal expansion by the 
approximate formula3 

®(VO,T)/®(V,T)=(PO/P)T, 

where y is an appropriate Griineisen parameter. This 
was taken as a constant in each salt,3 and was computed 
by the Griineisen formula at temperatures somewhat 
below room temperature using the expressions given 
above for p, £, and K. The values adopted for y are 
reported in Table I. The values for potassium chloride 
and bromide agree with the experimental values of the 
Griineisen parameter at moderate and high tempera­
tures reported by White and Schuele11 and by Bijl13 

within about 3 % . 
A cursory examination of Fig. 1 reveals that the 

scatter of the experimental points in the plots of the 
experimental Debye temperature for the heat capacity 
is largely eliminated by the integration in the plots for 
the entropy and for the thermal energy. The accuracy 
of all the plots is affected, in principle, by the approxi­
mate correction for the thermal expansion. However, 
at low temperatures, this correction is quite small and 
in the region between 200 and 270°K, where it reaches 
a few percent, it should be rather accurate, especially 
for the entropy. In fact, within the quasiharmonic 
approximation, the high-temperature limit of the 
Griineisen y is identical to the logarithmic volume 
derivative of the Debye characteristic temperature for 
the entropy at high temperature.20 The plots for the 
entropy are thus expected to be quite accurate. The 

20 T. H? K. Barron^Phil. Mag. 46, 720 (1955). 

12 0 2 4 0 4 8 12 

ri(io-2oK-i) r2(io-4°K-2) 

e, con- plots for the thermal energy and for the heat capacity 
>y the involve additional corrections and are affected by the 

uncertainties in the pertinent data. However, an 
mental uncertainty of 10% in the correction {V— VO)2/2VQKO 
energy, causes an uncertainty in the Debye temperature for 
Lure at the thermal energy which reaches only 0.3% at temper-
i. The atures of the order of the Debye temperature. For the 
i t0°K. heat capacity, instead, an underestimate of only 3 % 
spheric in fi at temperatures of the order of the Debye temper-
by the ature implies already an underestimate of the Debye 

temperature of over 2%. At higher temperatures, the 
underestimate in fi increases rapidly, and so does the 
effect of the Cp—Cv correction on the Debye tempera-

:. This ture. This renders the plots for the heat capacity of 
iputed little meaning at high temperature. 
lewhat 

given 4. ANALYSIS OF THE DATA 

w\ v|6 ^ n ^ s s e c t i ° n w e aPPly the theoretical results of 
blonde g e a 2 to analyze the plots obtained in Sec. 3 for the 
or tne temperature dependence at constant volume of the 

^?f"U3 experimental Debye temperatures for the entropy, the 
*J thermal energy, and the heat capacity at constant vol­

ume in potassium chloride, bromide, and iodide and in 
atp \? sodium iodide. 
o f ^ h e In the temperature region 0 2 / 6 < r < 8 O ° K where 
.pacity B a r r o n et ai* n a ( j successfully performed a quasi-
ots tor n a r m o n i c analysis for the heat capacity, we have used 
curacy t ^ e q U a s i h a r m o n i c expansions for the Debye tempera-
)proxi- tures. Specifically, we have carried out a least-squares 
^ e v e i j fit of these expansions to the experimental Debye 
ill ana temperatures at constant volume, testing also the 
eacnes e£fect of small changes in the width of the temperature 
•ecially r a n g e a n ( j the effect of varying the number of terms 
r?10I!1C r e t a m e d* in the expansions. While the first effect was 
)t tne fo u n ( j to be negligible, small variations in the values of 

ume the first few coefficients of each expansion were found 
ire ° r in several cases when the number of terms was varied 
0 1 T L 6 fr°m a m m r m u m of five to a maximum of eight. The 
e. l n e v a i u e s 0f the coefficients were also checked by graphical 

methods, analogous to those used by Barron et al.z for 
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TABLE II . Characteristic temperatures 0»(Fo) (°K).a 

KC1 K B r K I N a l 
5 Wth Cv S Wth Cv S Wth Cv S Wth Cv 

0o 228.5 ± 0 . 5 ••• ••• 175 .4±0 .5 ••• ••• 142.8 ± 0 . 5 ••• ••• 167.1 ± 0 . 5 

0 i ••• 2 3 1 . 6 ± 1 . 3 ••• ••• 180 .7±0 .7 ••• ••• 152 .8±0 .7 ••• ••• 180 .6±0 .7 

02 235.1 ± 1 . 4 2 3 t l ± 6 2 3 4 . 7 ± 1 . 3 186.1 ± 1 . 0 J g l ' ^ l l 1 8 6 - 8 ± 0 - 8 161 .9±1 .3 i6o".9±8 1 6 2 - 4 ± 1 - ° 195 .0±1 .2 ^ ' f ^ g 194 .3±1 .1 

04 2 4 0 . 4 ± 3 ••• 240.1 ± 4 1 9 2 . 4 ± 3 ••• 1 9 5 . 8 ± 3 1 7 5 . 0 ± 3 ••• 1 7 6 . 7 ± 3 2 1 8 . 5 ± 4 ••• 2 1 7 . 9 ± 4 

06 2 4 4 . 6 ± 5 - . . 2 4 5 . 9 ± 7 ••• ••• 204.1 ± 6 ••• ••• 186.7 ± 5 ••• ••• 2 3 5 . 7 ± 5 

08 ••• ••• 251.9 ± 9 • •• ••• 211.7 ± 8 

a T h e two values of 02 derived from the thermal energy are obta ined from the coefficients of T~x and of T~2 in the expansion of ®wh. 

the heat capacity. Figure 3 reports some of the pertinent 
graphs for potassium bromide. These illustrate quite 
clearly the different functional dependence on temper­
ature at constant volume of the experimental Deb ye 
temperatures for the different functions. 

Table I I gives the values of the characteristic 
temperatures ®n(Vo) derived from the values of the 
first few coefficients in the expansions for the three 
thermodynamic functions, and their estimated probable 
errors. The probable error includes the effect of the 
uncertainty in the primary data and the effect of the 
change in the number of terms retained in the expan­
sions. A significant feature of Table I I is the good 
agreement between the values of each characteristic 
temperature in a given salt derived from the three 
thermodynamic functions. The values given in Table I I 
agree also with the values reported by Barron et al.,3 

who determined ©2, @4, and ©6 from the heat capacity 
and used these values to calculate ©o from the value of 
the entropy at 270°K and ©i by interpolation. The 
values of the geometric mean of the vibrational fre­
quencies and of the first few moments of the frequency 
spectrum, referred to the volume at 0°K, follow at once 
from the values of the characteristic temperatures. 

Figures 1 and 2 show quite clearly that, in most cases, 
the experimental Debye temperatures for the three 
thermodynamic functions do not approach their quasi-
harmonic limits at high temperatures. I t is also apparent 
that the magnitude of the deviation increases in each 
salt as one passes from the entropy to the thermal 
energy and to the heat capacity. This suggests at once 
the role of the anharmonic contributions, in harmony 
with the comment made in Sec. 2 on the relative 
magnitude of their effect on the Debye temperatures 
for the different functions. Barron et al? implied, in 
fact, that the large deviation for the heat capacity is 
due entirely to the anharmonic contributions. 

To attempt a quantitative analysis of the anharmonic 
effects, we have chosen to rely on the entropy since the 
experimental Debye temperatures for this function are 
the most accurate. In a first approximation, the 
anharmonic coefficient A (Vo) was determined by means 
of Eq. (1.2) from the magnitude of the deviations 
between the experimental Debye temperature for the 
entropy at r > @ 2 and the quasiharmonic Debye 

temperature computed with the values of the ©n(Fo)'s 
reported in Table I I . The resulting values of A(Vo) 
were then corrected in an approximate fashion for the 
systematic error caused by the neglect of the anhar­
monic term in the fit of the entropy at low temperatures. 
The magnitude of A(Vo) increases by more than 50% 
but the corrected values of the ©w(F0)'s agree with the 
previous values within their probable error. Table I I I 

TABLE III. Anharmonic coefficient A(Vo) (10~5 deg"1). 

KC1 

3 ± 1 

KBr 

2.5±1 

KI 

0.5±0.5 

Nal 

-0 .2±0 .5 

reports the final values of A(Vo) together with their 
estimated probable errors. These include the magnitude 
of the correction to A (Vo) and the effect of the probable 
errors in the ©n(Fo)'s. 

The value of A(Vo) derived from the entropy and 
the values of the @w(Fo)'s derived from the quasi-
harmonic analysis of the thermal energy and of the 
heat capacity (slightly corrected to take account of 
the neglect of the anharmonic term in the low-temper­
ature fits) have then been used to compute the Debye 
temperatures for these last two functions down to 
moderate temperatures by means of Eqs. (13) and (14). 
The agreement between the computed and the experi­
mental Debye temperature for the thermal energy is 
found to be well within the precision of the computed 
value, which amounts to a couple of degrees. This 
provides a confirmation of the values of A (Vo) derived 
from the entropy since the experimental Debye temper­
ature for the thermal energy is expected to be fairly 
accurate. The computed Debye temperatures for the 
heat capacity with their uncertainties, determined 
mainly by the uncertainty in A(VQ), are reported in 
Fig. 4 for the potassium halides. Here the discrepancy 
between the computed and the experimental values at 
high temperature is clearly outside the precision of the 
computed curve for potassium bromide and iodide, 
and is at the limit of this precision for potassium 
chloride. This discrepancy is consistent, however, in 
sign and in magnitude with the anticipated underesti-
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FIG. 4. Tempera­
ture dependence of 
the Debye tempera­
ture (referred to the 
volume at 0°K) for 
the heat capacity at 
constant volume in 
the potassium hal-
ides at moderate and 
high temperatures. 
The solid curves are 
computed by means 
of Eq. (14) while the 
dashed curves are 
taken from Figs. 1 
and 2. 

GfeCK) 

mate of the experimental Debye temperature at high 
temperature, caused by the underestimate of the 
coefficient of thermal expansion. In fact, the use of the 
recently measured values for the coefficient of thermal 
expansion of potassium chloride10 in the Cp—Cv 
correction leads to experimental Debye temperatures 
in good agreement with the computed values at high 
temperature. 

5. DISCUSSION OF THE RESULTS 

Our analysis shows that the temperature dependence 
at constant volume of the experimental Debye temper­
atures for the entropy and for the thermal energy of 
the four salts in question, which is determined quite 
accurately from the Cp data, is well reproduced over a 
wide range of temperature ( i © 2 < r < § @ 2 ) by correct­
ing the quasiharmonic expansions for the Debye 
temperatures for the effect of the leading anharmonic 
contribution. For the heat capacity at constant volume, 
instead, the computed and the experimental tempera­
ture dependence of the Debye temperature at constant 
volume deviate significantly at high temperature where 
the experimental Debye temperature is quite inaccurate. 
This underlines the advantage of basing the investi­
gation of the anharmonic effects on the entropy. 

The quasiharmonic analysis of the three thermo­
dynamic functions at the lower temperatures displays 
clearly the different temperature dependence of the 
pertinent Debye temperatures. I t yields also consistent 
values for the first few moments of the vibrational 

spectrum, thus confirming the good validity of the 
quasiharmonic expression in describing the thermal free 
energy at these temperatures. Barron and Klein21 

have recently proved analytically that the thermal 
free energy, inclusive of the anharmonic contributions 
arising from cubic and quartic terms in the potential 
energy, has in fact the quasiharmonic form at suffici­
ently low temperature, but involves a vibrational 
spectrum shifted relative to the spectrum of the 
quasiharmonic crystal. 

The anharmonic analysis at the higher temperatures 
emphasizes the different magnitude of the effect of the 
anharmonic contributions on the Debye temperatures 
for the three functions, and yields, for the first time, 
experimental values for these anharmonic contributions 
at high temperature. The analysis indicates also that 
in the crystals in question the shift of the vibrational 
spectrum discussed by Barron and Klein21 affects the 
moments of the spectrum only by amounts comparable 
to the probable errors in the values derived from the 
quasiharmonic analysis. 

The over-all agreement between the calculated 
vibrational spectra of the salts in question and the 
values of the moments derived from the quasiharmonic 
analysis of the thermal thermodynamic functions has 
recently been discussed thoroughly by Karo and 
Hardy.22 On the other hand, a comparison between the 
anharmonic contributions to the heat capacity at 
constant volume estimated by Leibfried and Ludwig23 

with a semiempirical model, and the values that we 
obtain from the analysis of the thermal thermodynamic 
functions, reveals that the former are consistently 
much too large. The discrepancy ranges from a factor 
of four in potassium chloride and bromide, to more than 
an order of magnitude in potassium and sodium iodide. 

ACKNOWLEDGMENTS 

I t is a pleasure to acknowledge the helpful criticisms 
that we have received from Dr. T. H. K. Barron and 
Dr. J. A. Morrison. We are also glad to acknowledge 
our indebtedness to Dr. J. R. Hardy for sending us a 
preprint of Ref. 22, and to J. T. Schnute, student 
aide for the summer 1962, and to Mrs. J. M. Heestand, 
of the Argonne National Laboratory, for programming 
the calculations on the IBM 704 and 1620. 

2 1T. H. K. Barron and M. L. Klein, Phys. Rev. 127, 1997 
(1962). 

22 A. M. Karo and J. R. Hardy, Phys. Rev. 129, 2024 (1963). 
23 G. Leibfried and W. Ludwig, in Solid-State Physics, edited 

by F. Seitz and D. Turnbull (Academic Press Inc., New York, 
1961), Vol. 12, p. 275 [Eq. (17.1) and Table XV]. 


